intindex_th_ddcb2;/**< second derivative wrt conformal time of squared baryon sound speed \f$ d^2 [c_b^2] / d \tau^2 \f$ (only computed if some non0-minimal tight-coupling schemes is requested) */
intindex_th_rate;/**< maximum variation rate of \f$ exp^{-\kappa}\f$, g and \f$ (d g / d \tau) \f$, used for computing integration step in perturbation module */
intindex_th_r_d;/**< simple analytic approximation to the photon comoving damping scale */
intindex_th_dmu_nDM;/**< rate for DM-neutrino scattering */
intindex_th_dmu_nuDM;/**< rate for DM-neutrino scattering */
deprecated) (one more remark: if you have respectively 1,2,3 massive neutrinos, if you stick to the default value T_ncdm equal to 0.71611, designed to give m/omega of 93.14 eV, and if you want to use N_ur to get N_eff = 3.046 in the early universe, then you should pass here respectively 2.0328,1.0196,0.00641)
ncdm_psd_filenames = psd_FD_single.dat
ncdm_psd_parameters = 0.3 ,0.5, 0.05
m_ncdm = 0.04, 0.04, 0.04
w0_fld = -0.9
wa_fld = 0.
cs2_fld = 1
attractor_ic_scf = yes
scf_parameters = 10.0, 0.0, 0.0, 0.0, 100.0, 0.0
scf_tuning_index = 0
binned_reio_num = 3
binned_reio_z = 8,12,16
binned_reio_xe = 0.8,0.2,0.1
binned_reio_step_sharpness = 0.3
f_bi = 1.
n_bi = 1.5
f_cdi = 1.
f_nid = 1.
n_nid = 2.
alpha_nid = 0.01
c_ad_bi = 0.5
c_ad_cdi = -1.
c_bi_nid = 1.
r = 1.
n_t = scc
alpha_t = scc
potential = polynomial
2.b.2) for 'inflation_V' and 'polynomial': enter either the coefficients 'V_0', 'V_1', 'V_2', 'V_3', 'V_4' of the Taylor expansion (in units of Planck mass to appropriate power), or their ratios 'R_0', 'R_1', 'R_2', 'R_3', 'R_4' corresponding to (128pi/3)*V_0^3/V_1^2, V_1^2/V_0^2, V_2/V_0, V_1*V_3/V_0, V_1^2*V_4/V_0^3, or the potential-slow-roll parameters 'PSR_0', 'PSR_1', 'PSR_2', 'PSR_3', 'PSR_4', equal respectively to R_0, epsilon_V = R_1/(16pi), eta_V=R_2/(8pi), ksi_V=R_3/(8pi)^2, omega_V=R_4/(8pi)^3 (default: 'V_0' set to 1.25e-13, 'V_1' to 1.12e-14, 'V_2' to 6.95e-14, 'V_3' and 'V_4' to zero).